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Various types of boundary in orthorhombic calcium zirconate (CaZrO3) were examined using 
conventional transmission electron microscopy (CTEM), high-resolution electron microscopy 
(HREM), selected-area diffraction (SAED) and convergent-beam electron diffraction (CBED). 
Two types of interface, namely &boundaries and coherent twin boundaries were identified 
and analysed. The &boundaries were studied using CTEM, SAED and CBED; the twin bound- 
aries were investigated using the additional technique of HREM. Pseudosymmetric twinning 
was observed in CaZrO3 where the two domains were related to each other by either a 180 ° or 
a 90 ° rotation about an axis perpendicular to (1 01). A different type of twin boundary, where 
the adjacent domains were related by a 180 ° rotation about the normal to (1 00), was also 
noted. The observations are compared with previous studies on other ABO 3-type compounds 
isostructural with CaZrO 3. 

1. Introduction 
ABO3-type compounds analogous to CaZrO3 have 
been extensively studied, beginning even before the 
discovery of X-ray diffraction. These compounds have 
been explored mainly because of  their unique engin- 
eering properties. Despite the intense investigation 
that these compounds have received, there are still 
significant questions regarding the nature of point/ 
space groups and the lattice parameters of some of 
these systems. This difficulty of obtaining unambiguous 
crystal structure data is chiefly attributed to the pre- 
sence of  fine-scale twinning and/or the unavailability 
of defect-free large single crystals in many ABO 3 com- 
pounds [1-6]. 

In this paper we report for the first time the crys- 
tallographic nature of characteristic boundaries in 
CaZrO3. The CaZrO 3 phase occurs as a stoichiometric 
line compound in the CaO-ZrO2 system [7]. When the 
eutectic composition in this system is directionally 
solidified, the resultant microstructure consists of 
regular lamellae of CaZrO 3 and ZrO2 (CaO-stabilized), 
as shown in Fig. 1. During solidification, ZrO2 retains 
its defect fluorite structure but CaZrO 3 lowers its sym- 
metry by transforming from the high-temperature 
cubic structure to orthorhombic structure at about 
1750°C [7]. The crystal structure data for the room- 
temperature orthorhombic phase have not been defi- 
nitively determined in the literature, but in this report 
we have used the lattice parameters reported by Koop- 
mans et alo [3], which are 

a = 0.559 12nm b = 0.80171 nm 

c = 0.576 16nm 

We have recently identified the space group of CaZrO3 
as Pcmn and the details of this will be published 
elsewhere [8]. 

2. Experimental procedure 
The sample for the present study consisted of a eutec- 
tic microstructure containing the phases ZrO2 (CaO- 
stabilized) and CaZrO3, as described earlier. The 
directional solidification conditions for this material 
are reported elsewhere [9]. Thin sections, transverse to 
the growth direction of the eutectic sample, were cut 
using a diamond saw and were further thinned by 
mechanical polishing to about 75 #m. These thin discs 
were then thinned to perforation using a Gatan Twin 
Beam Ion Milling Machine operated at 6 kV and 15 ° 
incidence angle. The TEM foils were coated with a 
thin layer of amorphous carbon to avoid charging 
under the electron beam. Most of the convergent- 
beam electron diffraction (CBED) was performed using 
a Philips EM400T analytical electron microscope. A 

Figure 1 Transmission optical micrograph of a transverse section of 
CaO ZrO 2 eutectic. The darker phase is ZrO 2 (CaO-stabilized) and 
the lighter phase is CaZrO 3. 
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Figure 2 (a) BF micrograph in the two-beam condition (g002 from 
Segment I), showing asymmetrical fringe contrast at the interface as 
shown by the arrows. (b) CDF image using g002 from one gt 2~ from 
two reflections. Note the symmetrical fringe contrast as opposed to 
the BF contrast. (c) Composite [210] zone-axis selected-area dif- 
fraction pattern Segments 1 and 2. The spot splitting (arrows) along 
(002)t and (l 2 l) 2 rows is due to the difference in lattice spacings. 
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spot size of about 20 nm was used for these studies. 
High-resolution electron microscopy (HREM) obser- 
vations were made on a Jeol JEM 2000FX microscope 
with a point-to-point resolution of about 0.280nm. 
Although through-focal series images were taken each 
time, all HREM images shown in this paper were 
taken at near-optimum defocus. 

3 .  R e s u l t s  a n d  d i s c u s s i o n  

Figs 2a and b show, respectively, a bright-field (BF) 
and a centred dark-field (CDF) image of  a typical 
boundary in the CaZrO3 phase of the two-phase eutec- 
tic shown in Fig. 1. The BF image has asymmetrical 
fringe contrast (white to dark) at the interface but the 
CDF image using the (00 2) reflection from Segment 1 
of the crystal shows symmetrical contrast (white to 
white). This contrast feature is a major characteristic 
of &boundaries. 

Gevers et  al. [10] applied the dynamical theory 
of electron diffraction and imaging to calculate the 
characteristic fringe contrast at 5-boundaries. A 
5-boundary is defined by these authors as the interface 
separating two regions of the same crystal having 
slightly different values of  s (deviation from the exact 
Bragg reflection position for a reciprocal lattice point) 

or g (the Bragg reflection vector in the reciprocal 
lattice) for the same operative reflection in the observed 
electron diffraction pattern [11]. In further publica- 
tions, Gevers and co-workers [12, 13] showed that 
5-boundaries can be recognized in a conventional 
transmission electron microscope (CTEM) by the 
presence of  asymmetrical fringe contrast in the BF 
image and symmetrical fringe contrast in the corre- 
sponding CDF image. 

This methodology has been used by several workers 
to identify &boundaries in ferroelectric or ferromag- 
netic materials. BaTiO3 is an example of  a crystal 
where 5-boundaries arise due to differential tetragonal 
distortion across the boundary when the crystal goes 
through a perovskite-to-tetragonal transformation [12]. 
In the present case, the two crystal segments forming 
the boundary were rotated by approximately 60 ° 
about the incident beam direction (B [2 l 0]) as shown 
in Fig. 2c. Thus, the goo2 reflection of  Segment 1 of  the 
crystal is almost superimposed upon the g~ 2 ~ reflection 
of Segment 2, as evidenced in the composite diffraction 
pattern shown in Fig. 2c. This leads to a spot splitting 
along g002 of  one and g~2~ of two systematic rows, 
since the g002 vector of  Segment I whose lattice spac- 
ing is 0.288 nm is just larger than g~ 2 ~ of  Segment 2 
whose lattice spacing is 0.284 nm. Thus, this spot split- 
ting satisfies the requirement of a contrast effect at the 
5-boundary. 

There have been numerous reports in the literature 
concerning the characteristic twin-boundary structure 
in ABO3-type compounds. Bowman [14] studied twin 
systems in CaTiO3 using optical microscopy as early 
as 1908. He found several twin systems in this com- 
pound which he characterized as follows: 180 ° rota- 
tion about a normal to (t 0 1), 90 ° rotation about a 
normal to (1 0 1), and 180 ° rotation about a normal to 
(I 2 1), all with the same compositional planes. 

Recently, White et al. [4] studied CaTiOs using 
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Figure 3 A BF micrograph of calcium zirconate showing different 
twin systems. 

HREM and selected-area electron diffraction (SAED) 
to confirm the above twin systems. However, in addit- 
ion to the twin systems reported by Bowman, they 
also found evidence of twinning on the (0 1 0) com- 
positional plane. Twinning in several other systems 
such as CaSnO3 and SrSnO3 has been reported by 
Vegas et al. [5], but they did not determine the type of 
twinning in these systems. 

Fig. 3 shows a BF image of various twin-like bound- 
aries in CaZrO3. CBED was performed on individual 

twin segments to reveal the crystallography associated 
with each twin variant. An HREM image of Area I in 
Fig. 3 is shown in Fig. 4. The two crystal segments 
separated by the boundary are related by a 90 ° rota- 
tion normal to a 1 0 1 compositional plane such that 
the b axis of the crystal is common to both the 
segments; these are designated as 90 ° rotation twins 
about (1 0 1). Note that the twin interface is almost 
edge-on and with no evidence of defects or the pre- 
sence of a second phase. Fig. 5 shows another twin 
boundary (Area II in Fig. 3) which relates the adjacent 
crystal segments by a 180 ° rotation normal to (1 0 1), 
which is also the compositional plane. The lattice 
fringes are seen to run unobstructed through the inter- 
face. Such 90 ° and 180 ° twin boundaries are consistent 
with those observed for CaTiO3 by several workers 
[4, 14, 15]. However, Kay and Bailey [15] also reported 
180 ° twin boundaries normal to (1 2'1) in CaTiO3, 
while White et al. [4] observed 180 ° twin boundaries 
normal to (010). We have not observed either of 
these twin boundaries in our system. Instead, we have 
obtained evidence of 180 ° rotation boundaries normal 
to (1 00) as shown in Fig. 6 (Area III of Fig. 3). Note 
that the interface is not in edge-on configuration, and 
thus appears very diffuse. Also it was not possible to 
orient both the crystal segments at their exact zone 
axis; therefore, only 0 1 0 planes are imaged in this 
micrograph. However, it is likely that (1 00) and 
(0 0 1) twins may exist in this system though we did not 
observe them yet. 

4. Conclusions 
Two types of interface in CaZrO 3 were investigated 
and were identified as h-boundaries and coherent twin 
boundaries. Twin relationships were determined to be 
either 180 ° or 90 ° rotations normal to (1 0 1). A dif- 
ferent form of boundary with 180 ° rotation normal to 
(1 00) was also noted. The twin systems observed in 
this study appear to be consistent with twin systems 
investigated in compounds isostructural with CaZrO3. 

Figure 4 An HREM image of 90 ° rotation 
twin boundary (Area I in Fig. 3). 
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Figure 5 An HREM image of i 80 ° 
rotation twin boundary (Area II 

in Fig. 3). 

Figure 6 A lattice fringe image of 180 ° 
rotation with boundary about  the normal  
to (100)  (Area III in Fig. 3). Note the 
diffuse nature of  the interface as opposed 
to Figs 5 and 6 (see text). 
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